NICHOLAS ONG

Mechanical Engineering

@ nicholas.ong@mail.mcgill.ca

438)-873-1479

in linkedin.com/in/ong-nicholas

◊ Montreal, Quebec

EXPERIENCE

Turbine Rotating Systems Engineering Intern Pratt and Whitney Canada

June 2019-Oct 2019

♥ Longueuil, QC

- Developed a unified lifting methodology for thermo-mechanical fatigue failure of turbine blades
- Analyzed failure mechanisms of crack initiation and crack propagation in orthotropic single-crystal superalloys
- Applied finite element software ANSYS MADPL and theoretical failure mechanics to assess damage parameters and the effects of shot-peening on turbine blades

Defense and Aerospace Product Development Engineering Intern

Advanced Cooling Technologies

m June 2018-Sep 2018

♀ Lancaster, PA

- Designed a phase-change material plate heat exchanger for cooling of directed energy weapons (DEW)
- Developed SolidWorks production drawings of custom copper-water heat pipes for clients
- Fast Fourier Transform (FFT) analysis of latent heats of fusion of n-Octadecane and n-Eicosane as phase change materials for a wax-based PCM heat sink

ACHIEVEMENTS

- Dean's Honor List; Faculty of Engineering (2016-2020)
- Pratt and Whitney Targeted Scholarship (2020)
- McGill Engineering Competition; 2nd place (2016, 2017)
- McGill CAD|Madness; 2nd place (2017)
- Pennsylvania Technology Student Association; 1st place, Technological Debate (2016)

SKILLS

Analysis & Design

SolidWorks, ANSYS Mechanical, ANSYS Fluent, ABAQUS, MasterCAM, FEBio

Content

Creative Writing, Public Speaking

Software

ETEX, Excel, MinitabProgramming

MATLAB, Python

EDUCATION

Bachelor of Engineering (Mechanical)

McGill University: GPA 3.96/4.00

₩ Grad. Winter 2020

♥ Montreal, OC

WRITING

- Jack the Jet Engine, a children's book about the mechanisms of air-breathing turbofan machinery
- Baby's First Bessel, a children's book about the use of Bessel functions on the playground

PROJECTS

Mock Nuclear Fusion Reactor Facility Design (2019-2020)

- Designed, analyzed, and manufactured an optically clear Taylor-Couette (TC) flow facility with interchangeable geometries to investigate the turbulent flow characteristics of a liquid metal vortex used to compress plasma to a fusion state
- Translated client desires to engineering design parameters using Quality Function Deployment (QFD) and House of Quality
- Provided conflict mediation for a team of 4 to effectively meet deadlines and generate design iterations

Particle Swarm Optimization Methods (2020)

- Used Python to develop a particle swarm optimization algorithm based on swarm intelligence
- Optimized tuning parameters with Clerc's constriction factor to improve algorithm efficiency

Blood Flow Analysis in the Iliac Bifurcation (2020)

- Identified and analyzed aneurysm risk factors in the context of hemodynamic loads using pressure and wall shear stress contours
- Used CFD program ANSYS Fluent to measure and animate the velocity profiles affected by an abdominal aneurysm in the iliac bifurcation

Applications of Seismic Metamaterials (2020)

- Researched the history and modern-day use of phononic crystals in the context of seismic metamaterial cloaking for earthquake-resilient cities
- Presented a comprehensive report on current research for resonant metawedges and buried seismic resonators

Literature Review on Octopus Sucker Biomechanics (2019)

- Performed an in-depth review of sucker mechanics and biomimetic adhesion in soft robotics
- Top 3 presentations in graduate-level *Mechanics* of *Biological Materials* class

Collaborative Design Project (2018)

Designed and 3D printed a robotic manipulator with 3 degrees of freedom for a remotely-operated, Arduino-controlled rover capable of wall-climbing, battery replacement, and debris avoidance