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1 Introduction

In this paper, we will explore what the logarithmic decrement means, how it
is derived, and what purposes it might serve. We will use a simplified model
to understand the basic principles of vibration, but also because more complex
models are far too difficult. Keep in mind, however, that the same principles
underlie all vibrations. I’d encourage you to grab a piece of paper (a big one)
and follow along by drawing the diagrams and trying to do some of the math
yourself! It’s fun!

Our objective: considering a simple system of a mass, a damper, and
a spring, determine the damping ratio ζ using the method of the logarithmic
decrement. We will use this damping ratio to understand the principles of
vibration, the decay of oscillation, and viscoelastic material models.

2 A harmonic oscillator walks into a bar

Our story begins, as most textbook-style stories do, considering a mass m on
the ground. This mass is nothing special, and were it not the protagonist of
this story, this mass would probably stay stationary on the ground, left to waste
away amidst the crippling loneliness of inertia. But such is not the case, as this
mass is excited to see. For we, the meddling audience, have connected the mass
m to a vertical wall by attaching to it a spring of spring constant k and a viscous
damper, or dashpot, of damping coefficient c. We’ll call this system a harmonic
oscillator, and as it can only move left or right, it has but 1 degree of freedom.

(a) A single degree of freedom har-
monic oscillator, or SDOFHO for con-
fusing and short.

(b) A displaced SDOFHO where we
can see that x > 0

Figure 1: Our SDOFHO system

To those unfamiliar with the dashpot, just know that we will use it to quan-
tify the effects of viscous friction that steal energy from our system, proportional
to velocity but in the opposite direction. The spring also provides an opposing
force proportional to the distance it is stretched, so it will resist compression or
stretching. We can set a local coordinate system, named x, at the center of our
mass, and displace our system such that the mass moves away from the wall
with a positive displacement and positive velocity (going right), meaning x > 0
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and ẋ > 0. There is no external force acting on this system to make it oscillate,
so we say that our system is under free vibration.

Let’s construct a free body diagram of the mass, noting all forces acting on
it and excluding gravity (though it doesn’t really matter here, because gravity
doesn’t act in the same direction as our movement). Note that the damping
effect of the dashpot is taken to be in the same direction as the force exerted
by the spring, as the spring acts to impede any displacement, and the dashpot
seeks to dampen velocity. The spring exerts a force equal to kx, the product
of the spring constant and the displacement, while the dashpot exerts a force
equal to cẋ, the product of the damping constant and the velocity.

Figure 2: FBD of the mass

Using this free body diagram and Newton’s Second Law of motion, we find
an ordinary differential equation that says all the forces acting on the mass are
equal to the mass times the second derivative of position (ẍ, or acceleration).

mẍ = −kx− cẋ (1)

We can define several variables in the meanwhile to help us turn this ODE
into something more useful. We’ll define a dimensionless damping ratio ζ and
a natural frequency, or eigenfrequency, ωn:

ζ =
c

2
√
mk

ωn =

√
k

m

The damping ratio ζ is key to our understanding of vibrations, and it char-
acterizes the dissipation of oscillation. In other words, how readily does our
system stop vibrating? A system can be undamped (ζ = 0), underdamped
(ζ < 1), critically damped (ζ = 1), or overdamped (ζ > 1).
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We now see that equation [1] can be converted to the following, the Damped
Free Vibration Equation, or the equation of a system that has viscous damp-
ing acting on it, but no driving force, with simple algebraic manipulation. Try
it yourself starting here and working your way back to equation [1].

ẍ+ 2ζωnẋ+ ω2
n = 0 (2)

3 Eine kleine Nachtmathe

Great! We’ve found an equation (a 2nd order ordinary differential equation,
to be exact) that describes our SDOFHO (single degree of freedom harmonic
oscillator), but to what end? We can’t do much with this nice equation, as
compact as it is. We should solve it to find out what it says about x(t), or the
position of the mass. That is much more useful to us than a general form that
combines velocity ẋ and acceleration ẍ.

We solve equation [2] by guessing a form of the solution x(t) = Aest, and
plugging it into [2] to find the roots s1,2. Several sample steps are shown below,
but the majority of it is straightforward.

x = Aest

ẋ = sAest

ẍ = s2Aest

As follows: we can plug the above into Equation [2] and simplify:

s2Aest + 2ζωnsAe
st + ω2

nAe
st = 0

(s2 + 2ζωns+ ω2
n)Aest = 0

s2 + 2ζωns+ ω2
n = 0

Solve the quadratic equation above to find the roots s1 and s2, keeping in mind
that for now, we will assume that the system is underdamped, so ζ < 1. This
equation has two roots, being a second order ODE, and we find them to be:

s1,2 =
−2ζωn ±

√
4ζ2ω2

n − 4ω2
n

2

s1 = −ζωn − iωn
√

1− ζ2

s2 = −ζωn + iωn
√

1− ζ2

To simplify, as we are prone to doing, we can consider the damped natural
frequency ωd to be the ωn

√
1− ζ2 term in our roots above.

s1 = −ζωn − iωd
s2 = −ζωn + iωd
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Plugging our roots back into our sample solution x(t) = Aest, we can see
that the solution will be some linear combination of our two different roots, so
we represent our sample solution as:

x(t) = Aes1t +Bes2t (3)

x(t) = Ae(−ζωn−iωn
√

1−ζ2)t +Be(−ζωn+iωn
√

1−ζ2)t (4)

x(t) = Ae(−ζωn−iωd)t +Be(−ζωn+iωd)t (5)

This is not only an ugly equation, it’s useless to those of us that don’t get
what i is supposed to mean in the context of vibrations. We’ll use two incredibly
cool tricks that will make our lives easier. First, Euler’s formula [6]. This will
be used when solving 99% of all ODEs, as it can convert imaginary numbers to
real ones. How cool is that? Second, we will use a nifty trig identity [7] to make
our problem even simpler.

eiθ = cosθ + isinθ (6)

Acosθ +Bsinθ =
√
A2 +B2cos(θ − φ) (7)

φ = arctan(
A

B
) (8)

It’s good to know that with some tinkering, we can convert all exponentials
raised to imaginary numbers to linear combinations of sine and cosine functions,
but this math does rely on some expanding (which you should do on your big
piece of paper). In general, remember that whenever we see the function below,
we will end up with:

Aeix +Be−ix = Ccos(x) +Dsin(x)

C should be some arbitrary constant equal to (A+B) and D should be equal
to (A−B)i. We can perform this expansion easily if we know that:

cos(−θ) = cos(θ)

sin(−θ) = −sin(θ)

We are left with the following term for x(t). At this point, it doesn’t look
too bad because we don’t have any imaginary terms, but we can simplify even
further yet! We’ll use that nifty trig identity on Equation [5], then convert the
square root term to a general amplitude X.

x(t) = e−ζωnt(Ae−iωdt +Beiωdt) (9)

x(t) = e−ζωnt[Ccos(ωdt) +Dsin(ωdt)] (10)

x(t) = e−ζωnt[
√
C2 +D2cos(ωdt− φ)] (11)

x(t) = Xe−ζωntcos(ωdt− φ) (12)
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This beautiful equation says that the position of our mass m is simply the
product of some amplitude X damped (or made smaller) by a e−ζωnt term and
a cosine function that acts as a phase shift.

Keep in mind that when using all the relevant substitutions, this formula
is quite complex. Should the fancy arise, we could use the initial conditions in
[10], plugging them in to to find the fully expanded expression:

x(0) = x0 = C (13)

ẋ(0) = v0 = −ζωnC +Dωd (14)

Thus:

X =

√
x20 +

(
v0 + ζωnx0

ωd

)2

(15)

φ = arctan

(
v0 + ζωnx0

ωdx0

)
(16)

And lest we forget (as it has been a while):

ωn =

√
k

m
(17)

ζ =
c

2
√
mk

(18)

Now this is the point where things get interesting. We have derived a very
nice function that can tell us the position of our mass at any time, given its
initial position, initial velocity, the time that has elapsed, the damping ratio, the
spring constant, and the mass (x0, v0, t, ζ, k,m). Phew, that’s a lot of variables,
eh?

4 Logarithmic decrement: a user’s guide

At this point, we will introduce the Logarithmic Decrement. For our purposes,
it is much easier to measure the position x(t) than it is to find the damping
ratio. Accordingly, let’s construct a scenario that will allow us to use x(t) to
find ζ!

Here’s a general procedure for how to use the Logarithmic Decrement, or
the LogDec in some circles.

1. Obtain a time versus amplitude plot of a damped, freely vibrating mass.
It will look like a roller coaster with a very big hill at the beginning and
smaller hills near the end.

2. Take the natural log of the ratio of the first two, or any two, peak ampli-
tudes that we can see in Figure [3].
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3. Fiddle around with the equations until we can isolate ζ as a function of
things we know.

4. We’re done!

(a) Sample displacement versus time
graph

(b) Real data taken from an exper-
iment of displacement versus time
from Chen et al.

Figure 3: Time domain plots used in the Logarithmic Decrement

This is fairly nice, as we don’t need to mess with the very complex parts of
Equation [5]. We already know the amplitudes, as measured experimentally, so
the procedure is straightforward. Here are some things to know before we start
proceeding through the LogDec:

δ = ln

(
H1

H2

)
H is taken to be the damped amplitudes of the peaks of the graph, which are
pictured as X1 and X2. We will assume that the time elapsed between the
two peaks is the damped period, or Td. We can write this as a function of the
damped natural frequency (f = ωd = 2π/Td):

t2 = t1 + Td

t2 = t1 +
2π

ωd

Don’t forget that we defined the damped natural frequency ωd as ωn
√

1− ζ2,
a function of the natural frequency and the damping ratio.

Moving along, we’ll plug in the amplitudes H1 and H2 of our equations of
motion and see what we can find. Remember that the damped amplitude of our
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equation of motion is given by Xe−ζωnt.

H1

H2
=
Xe−ζωnt1

Xe−ζωnt2

=
e−ζωnt1

e
−ζωn

(
t1+

2π
ωd

)
= e

ζωn
2π

ωn

√
1−ζ2

= e
2πζ√
1−ζ2

Upon taking the natural log, we are left with:

δ = ln

(
H1

H2

)
=

2πζ√
1− ζ2

But soft! What light through yonder window breaks? After a little rearrange-
ment, we find:

ζ =
δ√

4π2 + δ2

Remember, δ here is just a number that we found by taking the natural log of
two amplitudes, it is a physical value that we already know!

The experiment in part (b) of Figure [3], published by Chen et al, used real-
life data to find a damping ratio of ζ = 0.215±0.013. This is quite nice because
we assumed that our system was underdamped (0 < ζ < 1), which turned out
to be true.

Is this not simply magnificent? Using just the ratio of consecutive amplitudes
of decaying oscillation, we can find our damping ratio ζ. Indeed, we have arrived
at a beautiful result.

5 Kelvin-Voigt: supermodel

It is quite satisfying to know the damping ratio, but there must be some greater
application that we would want it for. After all, why else would we do all this
work just to find some number?

To explore the myriad uses of the damping ratio, we’ll look to the world of
continuum mechanics. Long gone are the days of wonderfully linear stress-strain
relations and Hooke’s law. In this section, we’ll splash into the shallows of the
vast sea of viscoelastic material characterization.

On a stress-strain curve, we’ll first consider the linear elastic region, which
experiences elastic behavior (see the left graph in Figure [4]). When an applied
strain ε is removed, the stress σ in the structure goes back to zero, and no
energy is dissipated in the process of load application. This is the result of bond
stretching along crystallographic planes, and luckily for us, unless the material
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reaches its yield strength, elastic materials go right back to where they started
(otherwise, things fall apart). These Newtonian materials, or materials that
have a linear relationship between stress and strain, observe no time dependence.
This does not hold for all materials, which is why we have to go through this
little detour to get back to the damping ratio.

Human tissue, for example, does not behave with linear elasticity like met-
als do in certain stress ranges. Instead, human tissues behave in a manner
consistent with viscoelastic materials. Viscoelastic materials are time depen-
dent, meaning that the rate at which a strain is applied will change the slope of
the loading curve. A higher strain rate may lead to a steeper stress-strain curve.
Viscoelastics also dissipate energy when a load is applied and then removed, re-
sulting in hysteresis in the stress-strain curve. When loaded, the viscoelastic
material (the right graph in Figure [4]) stores energy, and upon unloading, en-
ergy is recovered. The area between the two curves represents the energy lost
through heat and deformation mechanisms, which makes viscoelastic materials
excellent for vibration absorption and insulation - and for our bodies.

Figure 4: Elastic vs Viscoelastic Behavior

We aim to model viscoelastic materials with rheological models that com-
bine an elastic component and a viscous component. Typically, a linear elastic
(Hookean) spring is used to represent the elastic contribution, and a linear vis-
cous damper (Newtonian dashpot) is used to represent the effects of damping
through viscous friction.

The Hookean spring’s mechanical contribution can be expressed with a ver-
sion of Hooke’s law:

σ = Eε (19)

Where E is the Elastic Modulus of the material (similar to the spring constant
k), ε is the unitless strain, and σ is the stress.

The Newtonian dashpot, which produces a stress proportional to the strain-
rate, can be quantified as:

σ = ηε̇ (20)

Where η is the viscosity of the material and ε̇ is the rate at which strain is
applied, analogous to the damping coefficient c and velocity ẋ, respectively.
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For our purposes in modeling a SDOFHO, we’ll use the dimensionless damp-
ing ratio ζ, or the ratio of the viscous parameter to the critical damping param-
eter, in place of viscosity η.

These two building blocks are usually combined in one of two ways: the
Maxwell model and the Kelvin-Voigt model. The Maxwell model assumes that
the spring and dashpot are connected in series and when the ends are pulled,
they experience the same stress, and the total strain is equal to the sum of their
individual strains.

We can quantify the Maxwell Model by differentiating and rearranging the
total strain equation:

σ̇

E
+
σ

η
= ε̇ (21)

This configuration, unfortunately, does not quite model what we’re looking
for in our SDOFHO. Having already connected our spring and dashpot in series,
we’ll look to a different connection schema: connecting them in parallel. This
is called the Kelvin-Voigt (or just Voigt) model, and upon inspection, we find
that it is exactly what we are looking for!

Figure 5: The Voigt Model looks suspiciously like the SDOFHO we drew earlier

The Voigt model, consisting of a spring and dashpot connected in parallel,
indicates that both components feel the same strain, and the total stress is the
sum of the stresses of the individual components.

σ(t) = Eε(t) + ηε̇(t) (22)

Our Voigt model will use the damping ratio ζ in place of the viscosity η
above. We now posses a constitutive model of linear viscoelasticity that has
the potential to characterize human tissue and incorporate the damping ratio.
What can we do with it?
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6 Breast practices for free vibration

Putting theory into practice, let’s examine a breast. The biomechanical mod-
elling of the human breast is no trivial task, but it remains an important one
to billions of people around the world.

In their 2013 paper in Ergonomics, ‘A study of breast motion using non-
linear dynamic FE (finite element) analysis’, Chen et al. note that “excessive
breast motion can induce breast pain in women and exercise-associated breast
pain is positively related to breast displacement.1” No duh.

Dr. Deirdre McGhee, from the University of Wollongong, found that large
breasts can generate enough force to break a clavicle2, and Dr. Alex Milligan,
from the Univerisity of Portsmouth, found that breast pain affects 72% of exer-
cising females3, likely caused by tension on the skin, fascia, and nerves during
periods of high breast displacement.

Breast modelling with FE is still an emerging field due to the inhomogeneity
of breast tissue, potential pain and embarrassment of volunteers, and the lack
of concrete knowledge of boundary conditions and material parameters for FE
models. Developing more accurate models of viscoelastic deformation is key to
using software to help analyze and design for today’s breasts, working toward
eliminating unnecessary pain.

Because they consist of varying layers of fat, glandular tissue, skin, fas-
cia, and muscle, breasts require immense and virtually nonexistent levels of
computing power for accurate finite element simulations. Despite insufficient
computational resources, we can attack complex problems by making simplify-
ing assumptions, developing a basic model, and proceeding with basic analyses.
Only after all that can we even start to think about dumping our problem in a
computer and letting it chug away.

As an old saying goes: “There’s only one way to eat an elephant: one bite
at a time.”

Of the many, many interacting branches of science that go into biomechanical
modelling, we can focus on what we know: a single vibrating mass. We can
use Newton’s Second Law, ordinary differential equations, and the logarithmic
decrement to calculate the damping ratio of any SDOFHO!

How then, do we measure the damping ratio ζ of a human breast? It’s
simple: let it go. A vertical breast drop is an example of damped vibration,
and the oscillations of the breast can be mapped in the time domain to gather
a free-vibration displacement history.

A simple way to do this, as used by Chen et al. and many others, uses
a camera and a retro-reflective marker. The marker is placed at the point of
maximum deflection (typically the nipple), and the subject raises and drops their

1Chen, L., Ng, S., Yu, W., Zhou, J., Wan, K. (2013). A study of breast motion using non-
linear dynamic FE analysis. Ergonomics, 56(5), 868-878. doi: 10.1080/00140139.2013.777798

2McGhee, D. (2009). Sports bra design and bra fit: minimising exercise-induced breast
discomfort (Ph.D). University of Wollongong.

3Milligan, A. (2013). The effect of breast support on running biomechanics (Ph.D). Uni-
versity of Portsmouth.
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breast, resulting in free decay, or amplitude attenuation by viscous damping.
Plotting the vertical position (using a measuring stick) versus time, the result
is a graph4 that looks like the one below.

Figure 6: Nipple displacement plotted against time for a freely vibrating breast

Interestingly enough, this plot looks familiar. Using the method of the log-
arithmic decrement, we can find the damping ratio of the breast ζbreast using
only the amplitudes of the first two peaks and some clever mathematics.

The value of ζ = 0.215 from Chen et al. is typical of a 36B bra size, but
much variation is expected. Depending on the size of the breasts, the age of the
breasts, the person to whom the breasts belong, and a variety of other factors, we
can expect a damping ratio somewhere in the 0.2 to 0.5 range. These damping
ratios can be used to help increase the complexity of FE models for viscoelastic
deformation and further our understanding of biomechanical modelling in the
context of breast pain. While this number may not be the exact damping ratio
of the incredibly complex viscoelastic continuum that makes up the breast, it
provides an approximation that is easy to test, to measure, and to calculate.
What more could you ask for from an approximation? Besides, for most people,
approximations are already more than good enough.

4Cai, Y., Chen, L., Yu, W., Zhou, J., Wan, F., Suh, M., Chow, D. (2018). A piecewise
mass-spring-damper model of the human breast. Journal Of Biomechanics, 67, 137-143. doi:
10.1016/j.jbiomech.2017.11.027
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7 Conclusion

From a basic harmonic oscillator to the millions of nodes on a finite element
breast, mechanics pervades every aspect of physical simulation and modelling.
Principles of mechanics can be seen at work in the construction of our bodies,
heard in the thrumming of jet engines, and felt in the cool of our air-conditioned
houses. Though it doesn’t always make sense at first, mechanics can shed valu-
able insight on problems that seem insurmountable.

The mechanics of vibration is not child’s play, and most analytical solutions,
even ones for systems with only 1 degree of freedom, can be tricky, relying on a
strong grasp of ordinary differential equations and physics. Similarly, continuum
mechanics and rheology stand atop a wall of tensor algebra and calculus, and
viscoelasticity incorporates tools from statistical thermodynamics and polymer
science.

Unsurprisingly, the world of mechanics does not stop there, and it can tell us
more about ourselves and our environments than we could possibly think to ask.
From vibrating masses to breast damping, never stop questioning and analyzing
the mathematical world around you. The extent of your curiosity predicates the
extent of your wonder, and what is life without wonderful things?

-Nicholas Ong

FIN.
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